CVE-2020-15211 (CNNVD-202009-1617)

MEDIUM
中文标题:
Google TensorFlow 缓冲区错误漏洞
英文标题:
Out of bounds access in tensorflow-lite
CVSS分数: 4.8
发布时间: 2020-09-25 18:45:24
漏洞类型: 缓冲区错误
状态: PUBLISHED
数据质量分数: 0.30
数据版本: v3
漏洞描述
中文描述:

Google TensorFlow是美国谷歌(Google)公司的一套用于机器学习的端到端开源平台。 tensorflow-lite 1.15.4之前版本, 2.0.3版本, 2.1.2版本, 2.2.1版本,2.3.1版本中存在安全漏洞,该漏洞允许攻击者从堆分配的数组的边界之外进行写入和读取。

英文描述:

In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative `-1` value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the `-1` index is a valid tensor index for any operator, including those that don't expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that only operators which accept optional inputs use the `-1` special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code.

CWE类型:
CWE-125 CWE-787
标签:
(暂无数据)
受影响产品
厂商 产品 版本 版本范围 平台 CPE
tensorflow tensorflow < 1.15.4 - - cpe:2.3:a:tensorflow:tensorflow:<_1.15.4:*:*:*:*:*:*:*
tensorflow tensorflow >= 2.0.0, < 2.0.3 - - cpe:2.3:a:tensorflow:tensorflow:>=_2.0.0,_<_2.0.3:*:*:*:*:*:*:*
tensorflow tensorflow >= 2.1.0, < 2.1.2 - - cpe:2.3:a:tensorflow:tensorflow:>=_2.1.0,_<_2.1.2:*:*:*:*:*:*:*
tensorflow tensorflow >= 2.2.0, < 2.2.1 - - cpe:2.3:a:tensorflow:tensorflow:>=_2.2.0,_<_2.2.1:*:*:*:*:*:*:*
tensorflow tensorflow >= 2.3.0, < 2.3.1 - - cpe:2.3:a:tensorflow:tensorflow:>=_2.3.0,_<_2.3.1:*:*:*:*:*:*:*
google tensorflow * - - cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*
opensuse leap 15.2 - - cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*
解决方案
中文解决方案:
(暂无数据)
英文解决方案:
(暂无数据)
临时解决方案:
(暂无数据)
参考链接
无标题 x_refsource_MISC
cve.org
访问
无标题 x_refsource_CONFIRM
cve.org
访问
无标题 x_refsource_MISC
cve.org
访问
无标题 x_refsource_MISC
cve.org
访问
无标题 x_refsource_MISC
cve.org
访问
无标题 x_refsource_MISC
cve.org
访问
无标题 x_refsource_MISC
cve.org
访问
无标题 x_refsource_MISC
cve.org
访问
openSUSE-SU-2020:1766 vendor-advisory
cve.org
访问
CVSS评分详情
3.1 (cna)
MEDIUM
4.8
CVSS向量: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N
机密性
LOW
完整性
LOW
可用性
NONE
时间信息
发布时间:
2020-09-25 18:45:24
修改时间:
2024-08-04 13:08:22
创建时间:
2025-11-11 15:36:05
更新时间:
2025-11-11 15:56:26
利用信息
暂无可利用代码信息
数据源详情
数据源 记录ID 版本 提取时间
CVE cve_CVE-2020-15211 2025-11-11 15:20:24 2025-11-11 07:36:05
NVD nvd_CVE-2020-15211 2025-11-11 14:57:03 2025-11-11 07:44:31
CNNVD cnnvd_CNNVD-202009-1617 2025-11-11 15:10:30 2025-11-11 07:56:26
版本与语言
当前版本: v3
主要语言: EN
支持语言:
EN ZH
安全公告
暂无安全公告信息
变更历史
v3 CNNVD
2025-11-11 15:56:26
vulnerability_type: 未提取 → 缓冲区错误; cnnvd_id: 未提取 → CNNVD-202009-1617; data_sources: ['cve', 'nvd'] → ['cnnvd', 'cve', 'nvd']
查看详细变更
  • vulnerability_type: 未提取 -> 缓冲区错误
  • cnnvd_id: 未提取 -> CNNVD-202009-1617
  • data_sources: ['cve', 'nvd'] -> ['cnnvd', 'cve', 'nvd']
v2 NVD
2025-11-11 15:44:31
affected_products_count: 5 → 7; data_sources: ['cve'] → ['cve', 'nvd']
查看详细变更
  • affected_products_count: 5 -> 7
  • data_sources: ['cve'] -> ['cve', 'nvd']