CWE-197 数值截断错误

Numeric Truncation Error

结构: Simple

Abstraction: Base

状态: Incomplete

被利用可能性: Low

基本描述

Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in the conversion.

扩展描述

When a primitive is cast to a smaller primitive, the high order bits of the large value are lost in the conversion, potentially resulting in an unexpected value that is not equal to the original value. This value may be required as an index into a buffer, a loop iterator, or simply necessary state data. In any case, the value cannot be trusted and the system will be in an undefined state. While this method may be employed viably to isolate the low bits of a value, this usage is rare, and truncation usually implies that an implementation error has occurred.

相关缺陷

  • cwe_Nature: ChildOf cwe_CWE_ID: 681 cwe_View_ID: 1000 cwe_Ordinal: Primary

  • cwe_Nature: ChildOf cwe_CWE_ID: 681 cwe_View_ID: 699 cwe_Ordinal: Primary

  • cwe_Nature: CanAlsoBe cwe_CWE_ID: 195 cwe_View_ID: 1000

  • cwe_Nature: CanAlsoBe cwe_CWE_ID: 196 cwe_View_ID: 1000

  • cwe_Nature: CanAlsoBe cwe_CWE_ID: 192 cwe_View_ID: 1000

  • cwe_Nature: CanAlsoBe cwe_CWE_ID: 194 cwe_View_ID: 1000

适用平台

Language: [{'cwe_Name': 'C', 'cwe_Prevalence': 'Undetermined'}, {'cwe_Name': 'C++', 'cwe_Prevalence': 'Undetermined'}, {'cwe_Name': 'Java', 'cwe_Prevalence': 'Undetermined'}, {'cwe_Name': 'C#', 'cwe_Prevalence': 'Undetermined'}]

常见的影响

范围 影响 注释
Integrity Modify Memory The true value of the data is lost and corrupted data is used.

可能的缓解方案

Implementation

策略:

Ensure that no casts, implicit or explicit, take place that move from a larger size primitive or a smaller size primitive.

示例代码

This example, while not exploitable, shows the possible mangling of values associated with truncation errors:

bad C

int intPrimitive;
short shortPrimitive;
intPrimitive = (int)(~((int)0) ^ (1 << (sizeof(int)*8-1)));
shortPrimitive = intPrimitive;
printf("Int MAXINT: %d\nShort MAXINT: %d\n", intPrimitive, shortPrimitive);

The above code, when compiled and run on certain systems, returns the following output:

result

Int MAXINT: 2147483647
Short MAXINT: -1

This problem may be exploitable when the truncated value is used as an array index, which can happen implicitly when 64-bit values are used as indexes, as they are truncated to 32 bits.

In the following Java example, the method updateSalesForProduct is part of a business application class that updates the sales information for a particular product. The method receives as arguments the product ID and the integer amount sold. The product ID is used to retrieve the total product count from an inventory object which returns the count as an integer. Before calling the method of the sales object to update the sales count the integer values are converted to The primitive type short since the method requires short type for the method arguments.

bad Java

...
// update sales database for number of product sold with product ID
public void updateSalesForProduct(String productID, int amountSold) {

// get the total number of products in inventory database
int productCount = inventory.getProductCount(productID);
// convert integer values to short, the method for the

// sales object requires the parameters to be of type short
short count = (short) productCount;
short sold = (short) amountSold;
// update sales database for product
sales.updateSalesCount(productID, count, sold);
}
...

However, a numeric truncation error can occur if the integer values are higher than the maximum value allowed for the primitive type short. This can cause unexpected results or loss or corruption of data. In this case the sales database may be corrupted with incorrect data. Explicit casting from a from a larger size primitive type to a smaller size primitive type should be prevented. The following example an if statement is added to validate that the integer values less than the maximum value for the primitive type short before the explicit cast and the call to the sales method.

good Java

...
// update sales database for number of product sold with product ID
public void updateSalesForProduct(String productID, int amountSold) {

// get the total number of products in inventory database
int productCount = inventory.getProductCount(productID);
// make sure that integer numbers are not greater than

// maximum value for type short before converting
if ((productCount < Short.MAX_VALUE) && (amountSold < Short.MAX_VALUE)) {

// convert integer values to short, the method for the

// sales object requires the parameters to be of type short
short count = (short) productCount;
short sold = (short) amountSold;
// update sales database for product
sales.updateSalesCount(productID, count, sold);

else {
// throw exception or perform other processing
...
}
}
...

分析过的案例

标识 说明 链接
CVE-2009-0231 Integer truncation of length value leads to heap-based buffer overflow. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0231
CVE-2008-3282 Size of a particular type changes for 64-bit platforms, leading to an integer truncation in document processor causes incorrect index to be generated. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3282

Notes

分类映射

映射的分类名 ImNode ID Fit Mapped Node Name
PLOVER Numeric truncation error
CLASP Truncation error
CERT C Secure Coding FIO34-C CWE More Abstract Distinguish between characters read from a file and EOF or WEOF
CERT C Secure Coding FLP34-C CWE More Abstract Ensure that floating point conversions are within range of the new type
CERT C Secure Coding INT02-C Understand integer conversion rules
CERT C Secure Coding INT05-C Do not use input functions to convert character data if they cannot handle all possible inputs
CERT C Secure Coding INT31-C CWE More Abstract Ensure that integer conversions do not result in lost or misinterpreted data
The CERT Oracle Secure Coding Standard for Java (2011) NUM12-J Ensure conversions of numeric types to narrower types do not result in lost or misinterpreted data
Software Fault Patterns SFP1 Glitch in computation

引用